Description
Human SOST / Sclerostin ELISA
Sclerostin (SOST) is a secreted glycoprotein with a C-terminal cysteine knot-like (CTCK) domain and sequence similarity to the DAN family of bone morphogenetic protein (BMP) antagonists. SOST mutations are associated with an autosomal-recessive disorder called sclerosteosis, which results in excessive bone growth. A milder form of the disease known as van Buchem disease is caused by a deletion at the end of this gene, which lowers sclerostin production. Sclerosteosis 1 and craniodiaphyseal dysplasia are examples of diseases connected to SOST. Negative regulation of TCF-dependent signalling by WNT ligand antagonists and signaling by GPCR are two pathways related to this one.
Product Name: | Human SOST / Sclerostin ELISA Kit |
Product Code: | HUFI00434 |
Size: | 96 Assays |
Alias: | SOST, Sclerostin, VBCHsclerosteosis |
Detection method: | Sandwich ELISA, Double Antibody |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Human SOST concentrations in serum plasma and other biological fluids. |
Sensitivity: | 37.5pg/ml |
Range: | 62.5-4000pg/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Human SOST and the recovery rates were calculated by comparing the measured value to the expected amount of Human SOST in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Human SOST and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
CV(%): | Intra-Assay: CV<8% Inter-Assay: CV<10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | Q9BQB4 |
UniProt Protein Function: | SOST: Negative regulator of bone growth that acts through inhibition of Wnt signaling and bone formation. Defects in SOST are the cause of sclerosteosis type 1 (SOST1). An autosomal recessive sclerosing bone dysplasia characterized by a generalized hyperostosis and sclerosis leading to a markedly thickened skull, with mandible, ribs, clavicles and all long bones also being affected. Due to narrowing of the foramina of the cranial nerves, facial nerve palsy, hearing loss and atrophy of the optic nerves can occur. Sclerosteosis is clinically and radiologically very similar to van Buchem disease, mainly differentiated by hand malformations and a large stature in sclerosteosis patients. Defects in SOST are a cause of van Buchem disease (VBCH). An autosomal recessive sclerosing bone dysplasia characterized by endosteal hyperostosis of the mandible, skull, ribs, clavicles, and diaphyses of the long bones. Affected patients present a symmetrically increased thickness of bones, most frequently found as an enlarged jawbone, but also an enlargement of the skull, ribs, diaphysis of long bones, as well as tubular bones of hands and feet. The clinical consequence of increased thickness of the skull include facial nerve palsy causing hearing loss, visual problems, neurological pain, and, very rarely, blindness as a consequence of optic atrophy. Serum alkaline phosphatase levels are elevated. A 52 kb deletion downstream of SOST results in SOST transcription suppression causing van Buchem disease. Defects in SOST are a cause of craniodiaphyseal dysplasia autosomal dominant (CDD). A severe bone dysplasia characterized by massive generalized hyperostosis and sclerosis, especially involving the skull and facial bones. The sclerosis is so severe that the resulting facial distortion is referred to as 'leontiasis ossea' (leonine faces) and the bone deposition results in progressive stenosis of craniofacial foramina. Respiratory obstruction due to choanal stenosis compromises the clinical outcomes of affected patients. Heterozygous mutations located in the secretion signal of the SOST gene prevent sclerostin secretion and can be responsible for craniodiaphyseal dysplasia. Belongs to the sclerostin family. 2 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Secreted; Secreted, signal peptide Chromosomal Location of Human Ortholog: 17q11.2 Cellular Component: extracellular matrix; extracellular region Molecular Function:protein binding; transcription factor binding Biological Process: negative regulation of BMP signaling pathway; negative regulation of protein complex assembly; positive regulation of transcription, DNA-dependent; response to mechanical stimulus Disease: Craniodiaphyseal Dysplasia, Autosomal Dominant; Hyperostosis Corticalis Generalisata; Sclerosteosis 1 |
NCBI Summary: | Sclerostin is a secreted glycoprotein with a C-terminal cysteine knot-like (CTCK) domain and sequence similarity to the DAN (differential screening-selected gene aberrative in neuroblastoma) family of bone morphogenetic protein (BMP) antagonists. Loss-of-function mutations in this gene are associated with an autosomal-recessive disorder, sclerosteosis, which causes progressive bone overgrowth. A deletion downstream of this gene, which causes reduced sclerostin expression, is associated with a milder form of the disorder called van Buchem disease. [provided by RefSeq, Jul 2008] |
UniProt Code: | Q9BQB4 |
NCBI GenInfo Identifier: | 20140220 |
NCBI Gene ID: | 50964 |
NCBI Accession: | Q9BQB4.1 |
UniProt Secondary Accession: | Q9BQB4,Q495N9, |
UniProt Related Accession: | Q9BQB4 |
Molecular Weight: | 24,264 Da |
NCBI Full Name: | Sclerostin |
NCBI Synonym Full Names: | sclerostin |
NCBI Official Symbol: | SOST |
NCBI Official Synonym Symbols: | CDD; VBCH; DAND6; SOST1 |
NCBI Protein Information: | sclerostin |
UniProt Protein Name: | Sclerostin |
Protein Family: | Sclerostin |
UniProt Gene Name: | SOST |
UniProt Entry Name: | SOST_HUMAN |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Before adding to wells, equilibrate the SABC working solution and TMB substrate for at least 30 min at 37°C. When diluting samples and reagents, they must be mixed completely and evenly. It is recommended to plot a standard curve for each test.
Step | Protocol |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µl of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |
Fill out our quote form below and a dedicated member of staff will get back to you within one working day!