Human PRKAB1 / 5'-AMP-activated kinase subunit beta-1 ELISA Kit
- SKU:
- HUFI01573
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q9Y478
- Sensitivity:
- 0.188ng/ml
- Range:
- 0.313-20ng/ml
- ELISA Type:
- Sandwich
- Synonyms:
- PRKAB1, 5'-AMP-activated protein kinase subunit beta-1, AMPK subunit beta-1, AMPKb, AMP
- Reactivity:
- Human
- Research Area:
- Metabolism
Description
Human PRKAB1 / 5'-AMP-activated kinase subunit beta-1 ELISA Kit
The protein encoded by PRKAB1 is a regulatory subunit of the AMP-activated protein kinase complex. The AMP-activated protein kinase is a heterotrimeric enzyme complex that catalyzes the conversion of adenosine monophosphate to 3'-phosphoadenosine monophosphate. The Assay Genie Human PRKAB1 / 5'-AMP-activated kinase subunit beta-1 ELISA Kit is a highly sensitive assay for the quantitative measurement of PRKAB1 / 5'-AMP-activated kinase subunit beta-1 in serum, blood, plasma, cell culture supernatant and tissue samples.
Product Name: | Human PRKAB1 / 5'-AMP-activated kinase subunit beta-1 ELISA Kit |
Product Code: | HUFI01573 |
Size: | 96 Assays |
Alias: | PRKAB1, 5'-AMP-activated protein kinase subunit beta-1, AMPK subunit beta-1, AMPKb, AMP |
Detection method: | Sandwich ELISA, Double Antibody |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Human PRKAB1 concentrations in serum plasma and other biological fluids. |
Sensitivity: | 0.188ng/ml |
Range: | 0.313-20ng/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Human PRKAB1 and the recovery rates were calculated by comparing the measured value to the expected amount of Human PRKAB1 in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Human PRKAB1 and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
CV(%): | Intra-Assay: CV<8% Inter-Assay: CV<10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | Q9Y478 |
UniProt Protein Function: | AMPKB1: a non-catalytic subunit of AMPK, a conserved kinase of the CAMKL family. AMPK is an energy-sensing protein that plays a key role in regulating cellular energy homeostasis. Environmental stress, such as heat shock, nutrient deprivation, hypoxia and ischemia, indirectly activate AMPK by the depletion of cellular ATP and the concomitant rise of ADP and AMP levels. Allosteric activation is achieved primarily by rising ADP levels, and not solely by AMP levels as previously thought. Activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton, probably by indirectly activating myosin. AMPK is a heterotrimer of an alpha catalytic subunit (AMPKA1 or -2), a beta (AMPKB1 or -2) and a gamma non-catalytic subunit (AMPKG1, -2 or -3). Different possible combinations of subunits give rise to 12 different holoenzymes. Beta subunits act as scaffolds on which the AMPK complex assembles, via its C-terminus that bridges alpha and gamma subunits. AMPK-beta1 or -beta2 subunits are required for assembling of AMPK heterotrimers and are important for regulating enzyme activity and cellular localization. AMPK beta1beta2 null mouse muscles reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Phosphorylation by ULK1 and ULK2 inhibits AMPK activity. Hematopoietic AMPKB1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. |
UniProt Protein Details: | Protein type:Protein kinase, regulatory subunit; Autophagy Chromosomal Location of Human Ortholog: 12q24.1-q24.3 Cellular Component: nucleus; cytosol; AMP-activated protein kinase complex Molecular Function:AMP-activated protein kinase activity; protein binding; protein kinase binding; protein kinase activity Biological Process: mitochondrion organization and biogenesis; protein heterooligomerization; organelle organization and biogenesis; insulin receptor signaling pathway; cell cycle arrest; signal transduction; regulation of protein kinase activity; protein amino acid phosphorylation; fatty acid biosynthetic process |
NCBI Summary: | The protein encoded by this gene is a regulatory subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. This subunit may be a positive regulator of AMPK activity. The myristoylation and phosphorylation of this subunit have been shown to affect the enzyme activity and cellular localization of AMPK. This subunit may also serve as an adaptor molecule mediating the association of the AMPK complex. [provided by RefSeq, Jul 2008] |
UniProt Code: | Q9Y478 |
NCBI GenInfo Identifier: | 14194425 |
NCBI Gene ID: | 5564 |
NCBI Accession: | Q9Y478.4 |
UniProt Secondary Accession: | Q9Y478,Q9UBV0, Q9UE20, Q9UEX2, Q9Y6V8, |
UniProt Related Accession: | Q9Y478 |
Molecular Weight: | |
NCBI Full Name: | 5'-AMP-activated protein kinase subunit beta-1 |
NCBI Synonym Full Names: | protein kinase, AMP-activated, beta 1 non-catalytic subunit |
NCBI Official Symbol: | PRKAB1 |
NCBI Official Synonym Symbols: | AMPK; HAMPKb |
NCBI Protein Information: | 5'-AMP-activated protein kinase subunit beta-1; AMPKb; AMPK beta 1; AMPK beta -1 chain; AMPK subunit beta-1; AMP-activated protein kinase beta subunit; 5'-AMP-activated protein kinase beta-1 subunit; protein kinase, AMP-activated, noncatalytic, beta-1 |
UniProt Protein Name: | 5'-AMP-activated protein kinase subunit beta-1 |
Protein Family: | 5'-AMP-activated protein kinase |
UniProt Gene Name: | PRKAB1 |
UniProt Entry Name: | AAKB1_HUMAN |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Before adding to wells, equilibrate the SABC working solution and TMB substrate for at least 30 min at 37°C. When diluting samples and reagents, they must be mixed completely and evenly. It is recommended to plot a standard curve for each test.
Step | Protocol |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µl of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |
Fill out our quote form below and a dedicated member of staff will get back to you within one working day!