Human FBLN5 / Fibulin-5 ELISA Kit
- SKU:
- HUFI00558
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q9UBX5
- Sensitivity:
- 1.875ng/ml
- Range:
- 3.125-200ng/ml
- ELISA Type:
- Sandwich
- Synonyms:
- FBLN5, Fibulin-5, DANCE, EVEC, UP50, ARMD3, FIBL-5,, fibulin 5, Urine p50 protein, Developmental arteries and neural crest EGF-like protein
- Reactivity:
- Human
- Research Area:
- Cell Biology
Description
Human FBLN5 / Fibulin-5 ELISA Kit
FGL2 (Fibrinogen Like 2) is a protein coding gene which are responsible for the production of proteins, which are essential to the function of all living cells. FGL2 is involved in the regulation of blood clotting, and mutations in this gene can cause a bleeding disorder called von Willebrand disease. Diseases associated with FGL2 include Viral Hepatitis and Hepatitis B. Pathways associated with FGL2 include Innate Immune System. An important paralog of FGL2 is FGG.
Product Name: | Human FBLN5 / Fibulin-5 ELISA Kit |
Product Code: | HUFI00558 |
Size: | 96 Assays |
Alias: | FBLN5, Fibulin-5, DANCE, EVEC, UP50, ARMD3, FIBL-5, fibulin 5, Urine p50 protein, Developmental arteries and neural crest EGF-like protein |
Detection method: | Sandwich ELISA, Double Antibody |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Human FBLN5 concentrations in serum plasma and other biological fluids. |
Sensitivity: | 1.875ng/ml |
Range: | 3.125-200ng/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Human FBLN5 and the recovery rates were calculated by comparing the measured value to the expected amount of Human FBLN5 in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Human FBLN5 and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
CV(%): | Intra-Assay: CV<8% Inter-Assay: CV<10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | Q9UBX5 |
UniProt Protein Function: | FBLN5: Promotes adhesion of endothelial cells through interaction of integrins and the RGD motif. Could be a vascular ligand for integrin receptors and may play a role in vascular development and remodeling. Defects in FBLN5 are the cause of cutis laxa, autosomal dominant, type 2 (ADCL2). A connective tissue disorder characterized by loose, hyperextensible skin with decreased resilience and elasticity leading to a premature aged appearance. Face, hands, feet, joints, and torso may be differentially affected. Additional variable clinical features are gastrointestinal diverticula, hernia, and genital prolapse. Rare manifestations are pulmonary artery stenosis, aortic aneurysm, bronchiectasis, and emphysema. Defects in FBLN5 are a cause of cutis laxa, autosomal recessive, type 1A (ARCL1A). A connective tissue disorder characterized by loose, hyperextensible skin with decreased resilience and elasticity leading to a premature aged appearance. Face, hands, feet, joints, and torso may be differentially affected. The clinical spectrum of autosomal recessive cutis laxa is highly heterogeneous with respect to organ involvement and severity. Type I autosomal recessive cutis laxa is a specific, life-threatening disorder with organ involvement, lung atelectasis and emphysema, diverticula of the gastrointestinal and genitourinary systems, and vascular anomalies. Associated cranial anomalies, late closure of the fontanel, joint laxity, hip dislocation, and inguinal hernia have been observed but are uncommon. Defects in FBLN5 are the cause of age-related macular degeneration type 3 (ARMD3). ARMD is a multifactorial disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid (known as drusen) that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane. Belongs to the fibulin family. |
UniProt Protein Details: | Protein type:Secreted; Secreted, signal peptide Chromosomal Location of Human Ortholog: 14q32.1 Cellular Component: extracellular matrix; extracellular region; extracellular space; proteinaceous extracellular matrix Molecular Function:calcium ion binding; integrin binding; protein binding; protein C-terminus binding; protein homodimerization activity Biological Process: cell-matrix adhesion; elastic fiber assembly; extracellular matrix organization and biogenesis; regulation of cell growth; secretion Disease: Cutis Laxa, Autosomal Dominant 2; Cutis Laxa, Autosomal Recessive, Type Ia; Macular Degeneration, Age-related, 3 |
NCBI Summary: | The protein encoded by this gene is a secreted, extracellular matrix protein containing an Arg-Gly-Asp (RGD) motif and calcium-binding EGF-like domains. It promotes adhesion of endothelial cells through interaction of integrins and the RGD motif. It is prominently expressed in developing arteries but less so in adult vessels. However, its expression is reinduced in balloon-injured vessels and atherosclerotic lesions, notably in intimal vascular smooth muscle cells and endothelial cells. Therefore, the protein encoded by this gene may play a role in vascular development and remodeling. Defects in this gene are a cause of autosomal dominant cutis laxa, autosomal recessive cutis laxa type I (CL type I), and age-related macular degeneration type 3 (ARMD3). [provided by RefSeq, Jul 2008] |
UniProt Code: | Q9UBX5 |
NCBI GenInfo Identifier: | 12643876 |
NCBI Gene ID: | 10516 |
NCBI Accession: | Q9UBX5.1 |
UniProt Secondary Accession: | Q9UBX5,O75966, Q6IAL4, Q6UWA3, |
UniProt Related Accession: | Q9UBX5 |
Molecular Weight: | 50,180 Da |
NCBI Full Name: | Fibulin-5 |
NCBI Synonym Full Names: | fibulin 5 |
NCBI Official Symbol: | FBLN5 |
NCBI Official Synonym Symbols: | EVEC; UP50; ADCL2; ARMD3; DANCE; ARCL1A; FIBL-5; HNARMD |
NCBI Protein Information: | fibulin-5 |
UniProt Protein Name: | Fibulin-5 |
UniProt Synonym Protein Names: | Developmental arteries and neural crest EGF-like protein; Dance; Urine p50 protein; UP50 |
Protein Family: | Fibulin |
UniProt Gene Name: | FBLN5 |
UniProt Entry Name: | FBLN5_HUMAN |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Before adding to wells, equilibrate the SABC working solution and TMB substrate for at least 30 min at 37°C. When diluting samples and reagents, they must be mixed completely and evenly. It is recommended to plot a standard curve for each test.
Step | Protocol |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µl of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |
Fill out our quote form below and a dedicated member of staff will get back to you within one working day!