Human Immunology ELISA Kits 4
Human Tumor necrosis factor receptor superfamily member 6 (FAS) ELISA Kit
- SKU:
- HUEB0109
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- P25445
- Range:
- 78-5000 pg/mL
- ELISA Type:
- Sandwich
- Synonyms:
- FAS, CD95, FASR, TNFRSF6, APO1, APT1, FAS1, FASTM, ALPS1A
- Reactivity:
- Human
Description
Product Name: | Human Tumor necrosis factor receptor superfamily member 6 (FAS) ELISA Kit |
Product Code: | HUEB0109 |
Alias: | Tumor necrosis factor receptor superfamily member 6, Apo-1 antigen, Apoptosis-mediating surface antigen FAS, FASLG receptor, FAS, APT1, FAS1, TNFRSF6, CD95 |
Uniprot: | P25445 |
Reactivity: | Human |
Range: | 78-5000 pg/mL |
Detection Method: | Sandwich |
Size: | 96 Assay |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | FAS: Receptor for TNFSF6/FASLG. The adapter molecule FADD recruits caspase-8 to the activated receptor. The resulting death- inducing signaling complex (DISC) performs caspase-8 proteolytic activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apoptosis. FAS- mediated apoptosis may have a role in the induction of peripheral tolerance, in the antigen-stimulated suicide of mature T-cells, or both. The secreted isoforms 2 to 6 block apoptosis (in vitro). Binds DAXX. Interacts with HIPK3. Part of a complex containing HIPK3 and FADD. Binds RIPK1 and FAIM2. Interacts with BRE and FEM1B. Interacts with FADD. Isoform 1 and isoform 6 are expressed at equal levels in resting peripheral blood mononuclear cells. After activation there is an increase in isoform 1 and decrease in the levels of isoform 6. 6 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Apoptosis; Membrane protein, integral; Receptor, cytokine; Cell surface Chromosomal Location of Human Ortholog: 10q24.1 Cellular Component: cell surface; cytoplasm; plasma membrane; integral to membrane; CD95 death-inducing signaling complex; nucleus; cytosol; lipid raft; external side of plasma membrane Molecular Function:identical protein binding; protein binding; signal transducer activity; transmembrane receptor activity; receptor activity; kinase binding Biological Process: circadian rhythm; caspase activation; spleen development; regulation of myeloid cell differentiation; renal system process; transformed cell apoptosis; apoptosis; positive regulation of apoptosis; positive regulation of protein homooligomerization; regulation of lymphocyte differentiation; response to toxin; response to glucocorticoid stimulus; negative regulation of B cell activation; signal transduction; negative thymic T cell selection; regulation of apoptosis; inflammatory cell apoptosis; B cell mediated immunity; induction of apoptosis via death domain receptors; gene expression; protein complex assembly; immunoglobulin production; activated T cell apoptosis; protein homooligomerization; negative regulation of apoptosis Disease: Autoimmune Lymphoproliferative Syndrome |
NCBI Summary: | The protein encoded by this gene is a member of the TNF-receptor superfamily. This receptor contains a death domain. It has been shown to play a central role in the physiological regulation of programmed cell death, and has been implicated in the pathogenesis of various malignancies and diseases of the immune system. The interaction of this receptor with its ligand allows the formation of a death-inducing signaling complex that includes Fas-associated death domain protein (FADD), caspase 8, and caspase 10. The autoproteolytic processing of the caspases in the complex triggers a downstream caspase cascade, and leads to apoptosis. This receptor has been also shown to activate NF-kappaB, MAPK3/ERK1, and MAPK8/JNK, and is found to be involved in transducing the proliferating signals in normal diploid fibroblast and T cells. Several alternatively spliced transcript variants have been described, some of which are candidates for nonsense-mediated mRNA decay (NMD). The isoforms lacking the transmembrane domain may negatively regulate the apoptosis mediated by the full length isoform. [provided by RefSeq, Mar 2011] |
UniProt Code: | P25445 |
NCBI GenInfo Identifier: | 119833 |
NCBI Gene ID: | 355 |
NCBI Accession: | P25445.1 |
UniProt Secondary Accession: | P25445,Q14292, Q14293, Q14294, Q14295, Q16652, Q5T9P1 Q5T9P2, Q5T9P3, Q6SSE9, A9UJX4, B6VNV4, |
UniProt Related Accession: | P25445 |
Molecular Weight: | 37,732 Da |
NCBI Full Name: | Tumor necrosis factor receptor superfamily member 6 |
NCBI Synonym Full Names: | Fas cell surface death receptor |
NCBI Official Symbol: | FAS |
NCBI Official Synonym Symbols: | APT1; CD95; FAS1; APO-1; FASTM; ALPS1A; TNFRSF6 |
NCBI Protein Information: | tumor necrosis factor receptor superfamily member 6; Fas AMA; FAS 827dupA; CD95 antigen; FASLG receptor; apoptosis antigen 1; Delta Fas/APO-1/CD95; FAS receptor variant 9; APO-1 cell surface antigen; TNF receptor superfamily member 6; apoptosis-mediating surface antigen FAS; Fas (TNF receptor superfamily, member 6); tumor necrosis factor receptor superfamily, member 6 |
UniProt Protein Name: | Tumor necrosis factor receptor superfamily member 6 |
UniProt Synonym Protein Names: | Apo-1 antigen; Apoptosis-mediating surface antigen FAS; FASLG receptor |
Protein Family: | Development-specific protein |
UniProt Gene Name: | FAS |
UniProt Entry Name: | TNR6_HUMAN |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |