Description
Human MT-CO1 / Cytochrome c oxidase subunit 1 ELISA
MT-CO1 / Cytochrome c oxidase subunit 1 is found in the mitochondria, and helps to convert oxygen into energy. Mutations in the MT-CO1 / Cytochrome c oxidase subunit 1 gene can cause mitochondrial diseases such as Leigh syndrome, respiratory chain defects, maternally inherited diabetes and deafness. The Assay Genie Human MT-CO1 / Cytochrome c oxidase subunit 1 ELISA Kit is a highly sensitive assay for the quantitative measurement of MT-CO1 / Cytochrome c oxidase subunit 1 in serum, blood, plasma, cell culture supernatant and tissue samples.
Product Name: | Human MT-CO1 / Cytochrome c oxidase subunit 1 ELISA Kit |
Product Code: | HUFI02042 |
Size: | 96 Assays |
Alias: | MT-CO1, Cytochrome c oxidase polypeptide I |
Detection method: | Sandwich ELISA, Double Antibody |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Human MT-CO1 concentrations in serum plasma and other biological fluids. |
Sensitivity: | 0.188ng/ml |
Range: | 0.313-20ng/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Human MT-CO1 and the recovery rates were calculated by comparing the measured value to the expected amount of Human MT-CO1 in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Human MT-CO1 and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
CV(%): | Intra-Assay: CV<8% Inter-Assay: CV<10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | P00395 |
UniProt Protein Function: | COX1: Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1- 3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. Defects in MT-CO1 are a cause of Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease resulting in acute or subacute loss of central vision, due to optic nerve dysfunction. Cardiac conduction defects and neurological defects have also been described in some patients. LHON results from primary mitochondrial DNA mutations affecting the respiratory chain complexes. MT-CO1 may play a role in the pathogenesis of acquired idiopathic sideroblastic anemia, a disease characterized by inadequate formation of heme and excessive accumulation of iron in mitochondria. Mitochondrial iron overload may be attributable to mutations of mitochondrial DNA because these can cause respiratory chain dysfunction, thereby impairing reduction of ferric iron to ferrous iron. The reduced form of iron is essential to the last step of mitochondrial heme biosynthesis. Defects in MT-CO1 are a cause of mitochondrial complex IV deficiency (MT-C4D); also known as cytochrome c oxidase deficiency. A disorder of the mitochondrial respiratory chain with heterogeneous clinical manifestations, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. Features include hypertrophic cardiomyopathy, hepatomegaly and liver dysfunction, hypotonia, muscle weakness, excercise intolerance, developmental delay, delayed motor development and mental retardation. A subset of patients manifest Leigh syndrome. Defects in MT-CO1 are associated with recurrent myoglobinuria mitochondrial (RM-MT). Recurrent myoglobinuria is characterized by recurrent attacks of rhabdomyolysis (necrosis or disintegration of skeletal muscle) associated with muscle pain and weakness, and followed by excretion of myoglobin in the urine. Defects in MT-CO1 are a cause of deafness sensorineural mitochondrial (DFNM). DFNM is a form of non-syndromic deafness with maternal inheritance. Affected individuals manifest progressive, postlingual, sensorineural hearing loss involving high frequencies. Defects in MT-CO1 are a cause of colorectal cancer (CRC). Belongs to the heme-copper respiratory oxidase family. |
UniProt Protein Details: | Protein type:Membrane protein, integral; Energy Metabolism - oxidative phosphorylation; Oxidoreductase; Membrane protein, multi-pass; EC 1.9.3.1; Mitochondrial Chromosomal Location of Human Ortholog: - Disease: Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, And Stroke-like Episodes; Deafness, Nonsyndromic Sensorineural, Mitochondrial |
UniProt Code: | P00395 |
NCBI GenInfo Identifier: | 116977 |
NCBI Gene ID: | 4512 |
NCBI Accession: | P00395.1 |
UniProt Related Accession: | P00395 |
Molecular Weight: | |
NCBI Full Name: | Cytochrome c oxidase subunit 1 |
NCBI Synonym Full Names: | mitochondrially encoded cytochrome c oxidase I |
NCBI Official Symbol: | MT-CO1 |
NCBI Official Synonym Symbols: | COI; MTCO1; COX1 |
NCBI Protein Information: | cytochrome c oxidase subunit I |
UniProt Protein Name: | Cytochrome c oxidase subunit 1 |
UniProt Synonym Protein Names: | Cytochrome c oxidase polypeptide I |
Protein Family: | Cox1 intron-like protein |
UniProt Gene Name: | MT-CO1 |
UniProt Entry Name: | COX1_HUMAN |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Before adding to wells, equilibrate the SABC working solution and TMB substrate for at least 30 min at 37°C. When diluting samples and reagents, they must be mixed completely and evenly. It is recommended to plot a standard curve for each test.
Step | Protocol |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µl of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |
Fill out our quote form below and a dedicated member of staff will get back to you within one working day!